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Abstract. We have studied the density of Stales (DOS) of the fmton  regime, which is localized in 
the very-low-frequency region (less than 1/100 of the spectrum), of a very large (more than IO6 
atoms) realistic model for silica aerogels. Our model is based on a percolating fractal structure, 
with an homogeneous particle represented by a sample of vitreous silica (v-SiO?), given by 
a molecular dynamics simulation. Interactiom are represented by the Bom-Mayer-Higgins 
potential. To evaluate the DOS we have developed the linear-frequency moments method. which 
allows us to compute the DOS of a very large system with great efficiency in the low-frequency 
region. A compmison with the expeimmtd results for silica aerogels is reported. 

1. Introduction 

Recently the fractal description has been used intensively to treat the microscopic structure 
and the dynamics of inhomogeneous systems. Thus, for realistic fractal systems, theoretical 
work (Alexander and Orbach 1982, Alexander et al 1983, Feng and Sen 1984. Grest 
and Webman 1984, Alexander 1986, Yakubo and Nakayama 1987, 1989) suggests that at 
intermediate length scales 1, between their homogeneous particle size a and their correlation 
length 2, the vibrational density of states (DOS) g(w)  is particularly simple: 

g(0) ? od-' (1) 

where 2 is the spectral (fracton) dimension. One can recognize weakly localized acoustic 
phonons at 1 > and particle modes at 1 < a. In addition to the phonon-fracton wp 
and the fracton-particle o, crossover frequencies, it is found that for the standard discrete 
percolating networks model, there exists a new crossover length scale 1, rr l/oc which 
depends on the relative strength of the microscopic bond-stretching and bond-bending elastic 
force constants, such that if le > a, for I < l,, the bond-stretching motion is energetically 
favourable, whereas for 1 > l,. the bond-bending motion becomes dominant (Feng 1985). 
Thus, when wc is smaller than q, the fracton properties of the system are governed by 
2 = !, in conformity with the Alexander and Orbach conjecture (1982), whereas when wc 
is much larger than of there is an interesting crossover from an effective spectral dimension 
D to d as the frequency is increased through the fracton regime. I) is close to 0.9 (Webman 
and Grest 1985). 

On the other hand, using small-angle neutron scattering (SANS), Courtens etal (1987a, b, 
1988), Vacher era/ (1988) and Reichenauer et al (1989) showed that porous silica aerogels 
reveal a fractal structure for a wide range of densities, with fractal dimension D = 1.8-2.4. 
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Combining neutron, Raman and Brillouin spectroscopies they identified in the DOS spectrum 
three crossovers (Vacher et al 1990, Bernasconi et al 1992). and two distinct regions in the 
fracton regime of samples of different microstructures that they associated with bend- and 
stretch-dominating elasticities (Vacher et a/ 1990). 

To interpret the dynamical behaviour of these systems, we have studied the dynamical 
properties of site and bond percolation (Rahmani et al 1993). Based on the Born potential 
with first and second neighbours, our models, where we supposed that each site of the 
percolating cluster was occupied by a punctual particle, showed that it is difficult to deduce 
clearly the nature of the contributions of the DOS of silica aerogels. So, the construction of 
a model based on a more realistic structure and potential energy seems to be necessary. 

A primary goal of this work is to build a realistic fractal model that is able to reproduce 
the different contributions in the DOS of silica aerogels. To do this, it is not only necessary 
to work on a very large system (more than IO6 atoms) that is able to generate fracton 
modes, but one must use computational techniques that are sufficiently powerful to treat 
these systems. 

To specify the numerical method used, we shall in this paper call the method which 
allows us to determine the squared-frequency distribution function C(w*) ,  the squared- 
frequency moments method and the method used to compute the DOS g(w) the linear- 
frequency moments method. 

The squared-frequency moments method is a powerful tool for the determination of 
the linear response (infrared, Raman and inelastic neutron scattering) of harmonic systems 
(Benoit 1987, 1989, Benoit and Poussigue 1989, Benoit et al 1990, Poussigue and Benoit 
1990, Poussigue er al 1991). As is well known, the method is not only simple but can be 
applied to very large systems, whatever the type of atomic forces, dimension of space or the 
structure of the material. The method applied to the calculation of the total DOS presents 
some difficulties at very low frequencies. Nevertheless, the DOS of very large percolating 
clusters (up to IO6 atoms) has been computed (Benoit et a1 1992a,b, Royer et ai 1992, 
Rahmani et a[ 1993). Indeed, the method seems to be very efficient in the analysis of 
spectra between umax and lo4 (umax = OJL; wmax is the maximal frequency of the spectra). 

Experimental data concerning silica aerogels show that the fracton region is localized 
at frequencies less than 300 GHz, whereas wmar - 36000 GHz. So, at the very outset, we 
cannot apply the squared-frequency moments method to the study of the fracton region of 
a realistic system. To do this, we have developed a particularly new and productive form 
of the moments method: the linear-frequency moments method, which allows us to reach 
the frequency region below u,,/104, by providing directly the total DOS g(w). In fact, by 
using the squared-frequency moments method, one computes first the function G(u), where 
U = w z ,  and from there one deduces the function g(w),  thanks to the relation 

g(w) = 2oG(wz) 

where g(w) dw is the fraction of frequencies in the interval (w,  w t dw). 

frequency moments method, which allows a direct determination of g(w). 
In the following, we present a numerical computation of the DOS using the linear- 

2. Computational procedure 

As we mentioned above, thanks to the squared-frequency moments method, we can calculate 
the function G(u) which is given by 
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where hj = U; is the j t h  eigenvalue of the dynamical matrix D of the system. To calculate 
the DOS function g(u): 

where U, = A, we take the 2 N  x 2 N  matrix @ ( N  is the size of D) defined by 

where I is the N x N identity matrix. It is easy to show that the eigenvalues of a are fuj .  
If the squared-frequency moments method is based on the matrix D, the frequency 

moments method is based on the matrix @. From definition (3) g ( u )  can he written as 

g(u) = -( I/n)Im,,o+[R(z)] with z = U + i &  ( 4 4  

where R(z), the Stieltjes transform of g(u), is given by 

R(z) = Tr[(zl- @)-'I. (4b) 

At this stage, one can see that the frequency moments method follows the same procedure 
as the squared-frequency moments method. Thus, R(z) is then obtained by (Benoit et el 
1992b) 

M 

R(z) = ( l / A M ) C R U ( z )  (4c) 
e= I 

where 

R"(z) = (q"l(Z1 - @)-'I@) (44 

where lqn) is a vector whose components are randomly and uniformly distributed between 
0.5 and -0.5, 01 is an integer varying from 1 to M ( M  + CO), A is a normalization constant 
equal to A, and for any 01 and p there is the relation 

( 1 / 2 N ) ( q e  14') = A&p. 

With the conditions that @ is large enough and homogeneous, it is sufficient to take M 
equal to one (or a small number). In our calculations we take M = I .  

The method now consists of expanding RoL(z) in a continued-fraction expansion 
(Stieltjes 1884, Gaspard and Cyrot-Lackmann 1973, Jurczek 1985): 

(5) 
1 

RYZ) = 
z - a 4  - 

bm2 
b% 

z -am" - $(z)  

z - au2 - 
z -a"? - . . , 
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where @(z) is the infinite tail of the fraction. The coefficients a: and b,; are derived from 
and are given by 

a,"+, = if/u,; and by = u:/u:-, (6) 

where up and i,: are the spectral generalized moments defined by (Benoit 1987) 

It is easier to show that b,: equals zero, and consequently a,: also. The polynomials Pp(*) 
obey the following recurrence law: 

PP,l(*) = *PP(*) -b,"PP-l(*) (8) 

with PI(*) = 0 and P t ( @ )  = 1. 
The determination of the tail @(z) is not trivial. Indeed, as shown in Benoit et al 

(1992b), a sharp truncation of the fraction causes the appearance of sharp lines in the 
calculated spectrum. To obtain a good solution, one analyses the Fourier components of the 
coefficients b,y. If they exhibit oscillations with the period m (m > 1): b: = b:++,, then the 
tail will be given by 

@r,m(z) = (9) 
2P:-,(z) 

Pp(z) obeys the recurrence law (8) and Q;(z) obeys the following: 

Q;+L(Z) = z Q ~ ( z )  -b:Qy-i(~) 

with Q'?,(z) = 0, Qt(z )  = 1. 
As we shall see, a very good agreement is noted between the frequency and the squared- 

frequency moments method. However, calculations show that a greater number of moments 
are required with the second method (more than 400). In the case of the first method, about 
200 moments are sufficient. 

3. Physical model 

Our realistic fractal model for silica aerogels is based on a 3D infinite cluster percolation 
structure (figure I ) .  The homogeneous particle of our aggregates is a 96-atoms (32 silicons 
and 64 oxygens) sample of vitreous silica (v-SiOz), with a base size of 10 A in X and Y, 
and 14 A in Z, given by a molecular dynamics simulation (Garofalini 1982, Garofalini and 
Levine 1985, Feuston and Garofalini 1988). 

The potential used in this study is given by the modified Born-Mayer-Higgins equation, 
which has been used as the effective potential in the molecular dynamics simulation 
(Garofalini 1982). This potential has been shown to be a good potential to reproduce 
the experimentally determined radial distribution function, bond-angle distribution and 
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ioA 
j Sample of MiO, ( 0 : 64 ; Si : 32); 
; Riven by Molecular Dynamic Simulation: 

Figure 1. A schematic diagram of the model for silica aerogels: samples are placed on sites of 
M infinite 3D percolating cluster. 

frequency spectrum for bulk silica and silicate glasses. This equation gives the potential 
between atoms i and j as 

where Ajj is a short-range repulsive parameter based on ion sizes: 

with Z the electronic charge, n the number of valence shell electrons, U the atomic size (the 
repulsive radius parameter), rj, the distance between atoms i and j ,  p ,  j 3  and b adjustable 
constants, and the function erfc in the Coulomb term is the complementary error function 
defined by 

TIP 
erfc(rlj3) = 1 - / exp(-r2s2) ds. 

f i 0  

The values for p .  j 3 ,  and b were determined by analysing the frequency spectrum (Dos) of 
the isolated homogeneous particle, with a nearest-neighbour cut-off for a11 interactions equal 
to 4 A, using the usual dynamics matrix diagonalization. The isolated homogeneous particle 
is the sample of v-SiOz given by the molecular dynamics simulation, where we exclude 
periodic conditions in the dynamical matrix calculations. As one can expect, the suppression 
of these conditions induces instability of the system by the occurrence of negative frequency 
squares. With the values for Ai;, Bij and pij given in table 1, our system is stable and the 
general features of the spectrum appear to be consistent with experimental data for vitreous 
silica. The peak in the low-frequency region (- 100 cm-') is related to the shortness of 
the particle size (figure 2). 
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Table 1. The parameters used in the Born-Mnyer-Higgins QOtetentid. 

4 j  8, G j  Pi j 
i j Z; Zi (IO-’ erg) erg) (IO-’ erg) (10-9 erg) 

S i  Si +4 +4 0.3963 2.2100 1.148 0.5075 
Si 0 +4 -2 05104 1.2750 1.284 0.5075 
0 0 -2 -2 0,1014 2.1510 1.421 0.5075 

In our model (Rahmani 1993), we assume that particles are placed at sites of the 3D 
infinite percolation cluster formed on a regular cubic lattice, with an occupation probability 
p 2 pe  ( p c  = 0.31 1). pc being the percolation threshold. 

If U= (:) denotes the displacement of the atom i of a particle I in the a direction, the 

set of equations of motion for the atom i is given by 

with 

where LDWp (t;) are the force constants between atoms i and j given by 

in;, r:,, are respectively the mass (mo = 16 g / N  and msi = 28 g / ~  N being the 
Avogadro number) and the equilibrium position of the ith atom (given by the dynamics 
molecular simulation) in the Ith particle. Two particles are called neighbours i f  the sites 
that they occupied are first or second neighbours; Vij is the Born-Mayer-Higgins potential 
(IO); its parameters are given in table 1. 

4. Results and discussion 

To test the accuracy of our technique, we have plotted in figure 2 the DOS of the isolated 
homogeneous particle obtained by the frequency moments method, the squared-frequency 
moments method and diagonalization. Excellent agreement is noted between the three 
methods. 

To illustrate the efficiency of the frequency moments method in the very-low-frequency 
region, we have plotted in figure 3, on a log-log scale, the DOS g(o) versus w of a percolating 
cluster formed on a cubic lattice of size 653 at p = 0.33. Interactions are represented by 
the Born potential (Qiming Li et al 1990, Yakubo er ai 1990, Yakubo and Nakayama 1987, 
1989, Webman and Crest 1985): 
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Frequency (“I) 

Figure 2. The DOS g(o) versus w for the isolated homogeneous particle (96 atoms), and a test 
of the linear-frequency moments method. -a-, diagonalization; -a-, squared-frequency 
moments method: -A-, linear-frequency momens method. 

where the summation is performed over the first-nearest neighbouring pairs (i, j )  and ui is 
the displacement of the atom i, k,, is a random variable which takes the value 1 if the sites 
i and j are both occupied, and 0 otherwise, and ci = 0.125 is the strength of the elastic 
interaction parameter. The system is represented by an infinite cluster where each site is 
occupied by a particle of mass m = I .  The slope in the fracton region is 0.33f0.02, i.e. the 
spectral dimension is d = 1.33 f 0.02, in good agreement with the Alexander and Orbach 
conjecture (d = 4). One can show also that the frequency moments method has allowed 
us to reach the low-frequency region down to - wmm/103, whereas the squared-frequency 
moments method is limited to - wm,/102. 

To compare the frequency moments method to the squared-frequency method, at very 
low frequencies in the case of our realistic model for silica aerogels, we have represented, 
in figure 4 ,  the DOS g(w)  versus w ,  on a log-log scale, of a cluster constructed on a cubic 
lattice of size 233 at p = 0.33. One can observe the accuracy of both techniques up 
to a frequency - 400 GHz, which is of the order of w,,/lOO. Below this frequency 
the squared-frequency moments method diverges. However, for such a system the lowest 
frequency must be at least of the order of the lowest-frequency mode of the v-SiOz system 
of size L = 322 A; i.e. @fin rr 100 GHz, The frequency moments method seems, with 
precautions in the computing tail, to reproduce nicely the DOS of the system, as we shall 
see. 

Computations were performed on the same cubic lattice of side a = 35, for different 
occupation probabilities p :  ( a )  p = 0.321, ( b )  p = 0.325, ( c )  p = 0.331 and (d )  p = 0.350. 
In table 2, we have reported the dimensions x, y. and z, the macroscopic densities p and 
the order N of the dynamical matrix D of our aggregate. We have also given the memory 
occupation and the CPU times necessary to compute one coefficient of the continued fraction 
for each system. 

In figure 5(a), we have reported values for the coefficients b, versus n for systems (a) ,  
(6) and ( c ) .  We note a very good stability in the b, calculation. We observe also that these 
coefficients exhibit a pseudo-periodicity, which is determined by analysing the b, Fourier 
components (figure 5(b)). We note the presence of a pseudo-period close to four. So, to 
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-4 -3 -2 -1 0 
Log(0)  

1 

Figure 3. The DOS On a log-log Scale for a ID site-percolating network of size 6 9  at 
the occupation probability p = 0.33 ( p c  = 0,3112). in the c a e  of the scalar model using 
the squared-frequency and the linear-frequency moments methods. -. squared-frequency 
moments method; -, linear-frequency moments method. 

determine the tail @ ( z )  of the continued fraction, and in order to obtain smooth curves, we 
choose a multiple of four, m = 16, in equation (9), which gives more stable results. 

In figure 6 we have represented the function log(g(w)) versus log(w) for the four systems 
(a), (b) ,  ( c )  and ( d )  defined in table 2. We note that the four curves show a common region 
above the frequency 0, - 300 CHz. Obviously, this region represents the particle modes. 
The calculated value for w, is in agreement with the experimental value of 250 GHz obtained 
for the sample d$ignated NH in Vacher et al (1990), which is composed of particles of 
mean size - 12 A (14 A x 10 A x IO A for our samples) and has a macroscopic density 
p = 210 kg m-3, 

We observe also in these spectra the presence of an intensive peak near w,. In contrast, 
experimental data show a weak peak in this region. In order to determine the nature of 
this peak, we have computed the surface projected DOS of our system. To do this, we have 
taken random charges I@) on atoms of the surface which are in a thickness of 2 A of our 
aggregate and zero elsewhere. We have reported in figure 7, the surface DOS and the total 
DOS of a sample formed on a cubic lattice 233 at p = 0.33. One can show that, qualitatively, 
the two curves present the same behaviour. The peak observed in the surface DOS is more 
enhanced than the peak of the total DOS. Hence, one can conclude that the surface modes 
contribute strongly in the fracton DOS and especially near the crossover 0,. 

The srrong intensity of the peak obtained theoretically compared with the experimental 
intensity can be explained by the structure of our model, which is based on identical 
homogeneous particles. In real systems, the presence of particles of different sizes could 
produce B dispersion of the surface modes near U,, whereas identical particles could give 
an accumulation of modes in this region. 



A fractal model for silica aerogels 1491 

,001 
10 loo log( 0 (GHz)) 10000 

Figure 4. The DOS g ( w )  versus w ,  on a log-log scale, for a sample formed on a )D site- 
percolating cluster (233 cubic lattice at p = 0.33) using the squared-frequency and the linear- 
frequency moments methods. -, squared-frequency moments method: -, line=-frequency 
moments method. 

Table 2. Clwncteristics of the computed aaregates: x ,  y and z design the dimensions of the 
aggregates, p is the macroscopic density. N is lhe size of D for the four samples (a), (b). (c) 
and (d); CPU, times necessary to compute one moment: Memory, memory storage required for 
each system using the linear-frequency moments method. 

a x ( A )  y ( A )  z (A) CPU(S) Memory(Mb) N P (kg m-3) 

11.52 70 537696 104.8(n) 
35 350 350 490 14.31 85 667 872 130.0(b) 

19.60 120 914976 178.3(c) 
31.54 180 I472256 262.3(d) 

In regions below w, our systems present an accumulation of fractons. Since our model 
does not include periodic conditions. one does not expect a Debye law in the very-low- 
frequency region. Nevertheless, it seems that for the dense sample (d) a phonon region 
begins to set up below q, 

We remark that the crossover frequency we for the weakly dense system (a : p = 105 kg 
m-3) is of the order of 10 GHz, whereas = 1 GHz in  experiment. This difference can 
be related to two factors. 

(i) The efficiency of the frequency moments method. As established before, the test 
shows an efficiency of the technique up to wm/lOOO, i.e. 35 GHz for silica aerogels. At 
the very outset, we have no proof that this frequency is the limit of our numerical method. 
The stability of the obtained result and, as we shall show, the coherent behaviour of the 
DOS with macroscopic density changes indicate that the linear-frequency moments method 
is valid at least until 10 GHz. 

(ii) This point concerns the structure of our model. We mention. firstly, the choice of 
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k 
Figure 5. ( U )  Plots of the coefficients b. versus n for the three syslems noted (a), ( b )  and (c). 
( b )  A plot of the Fourier components of Ihe cwficienfs b,. 

the fractal structure. The percolating model seems to be inadequate for the silica aerogels 
structure because of ifs connectivity (Alexander 1989). A soft structure is certainly more 
representative for that system. If the lowest frequency of our model is smaller than the 
experimental one, we can deduce that our model is more rigid than silica aerogels. This 
behaviour can be related to the interaction force intensity. Real systems are composed 
of particles of different sizes, so the interactions concern a small surface of particles in  
contact, i.e. weak interactions. In our model, the parallelepiped form of our identical 
particles reinforces greatly the interactions. 

Let us consider the behaviour of the DOS with the macroscopic density ( p )  variations. 
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-1.2 - 
3 - 
M - 
8 - 
-1.8 

-2.4 
0.75 1.50 2.25 3.00 

log ( 0 (GHz) ) 

Figure 6. The DOS ~ ( w )  versus U ,  on a log-log scale for the four samples noted (a), (b). (c) 
and ( d ) .  which are formed on a 35’ cubic lattice at values for p of, respectively, 0.3?10,0.3250. 
0.3305 and 0.3500. 

/ 
I 

,001 
10 100 1000 10000 

log( W (GHz)) 
Figurc 7. The total and surface DOS g(w) versus U ,  on a log-log scale, for a sample formed 
on a ID site-percolating cluster (233 cubic lattice at p = 0.33). -. DOS (surface); -, DOS 

(total). 
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We show that the crossover wt varies from 10 GHz for the less dense system (a) to 42 GHz 
for the more dense system (d). This result reproduces the experimental data concerning 
the increase of the sound velocity with increasing p (Conrad et al 1989, Courtens et  al 
1987a, b). We have represented, in figure 8, the variations of the frequency wf versus p. 
on a log-log scale. The slope is equal to 1.54 f 0.03. Since our model size L is finite, the 
sound vetocity v is given by (Alexander and Orbach 1982) 

we = zrrv(L)/L. 

We can deduce that 

I.5410.05 

Qualitatively, this behaviour is consistent with results obtained for silica aerogels (Vacher 
el al 1988). This accuracy supports the efficiency of the frequency moments method in 
determining the low-frequency region of the DOS below wm/lOO; 01 - 10 GHz for the 
first system (a). 

slope : 1.54 f 0.05 
T 

0.5 ! 3 
2.0 2.1 2.2 2.3 2.4 2.5 

log( p)  
Figure 8. The crossover frequency wf for the realistic model DOS, WDUS the mcmscopic 
density p.  on a log-log d e .  

Finally, concerning the two contributions identified in the fracton regime DOS of silica 
aerogels, which are associated with the stretching and bending elasticities, our model 
reproduces these contributions. The low-frequency fracton region (05 < o < o, - 80 GHz) 
can be described by an effective spectral dimension 1.00 f 0.02 c b c 1.30 i 0.02 for 
105 kg m3 c p < 262 kg m-3. It is difticult to analyse the high-frequency fracton region 
(wc c w < ma) in terms of an effective spectral dimension because of the presence of 
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the peak at w,. We can conclude that our model reproduces qualitatively the experimental 
fracton regime of silica aerogels. 

In conclusion, we have developed a realistic model for silica aerogels based on infinite 
percolating clusters, with an homogeneous particle represented by a sample of v-SiO2 given 
by a molecular dynamics simulation. Thankse to the frequency moments method, we have 
calculated the DOS of systems of size - 500 A x 350 A x 350 A and of different densities. 
More than IO6 degrees-of-freedom systems are studied. An excellent efficiency is noted 
with the frequency moments method in determining the very-low-frequency region below 
w,,/IOO. Our model reproduces qualitatively the silica aerogels DOS: particle modes in the 
high-frequency region above - 300 GHz followed in the low-frequency region by a fracton 
regime sensitive to the macroscopic density. In agreement with reality, we note also that our 
model shows that the more the macroscopic density increases the more the sound velocity 
in our systems increases. However, an analysis of the fracton region in terms of effective 
spectral dimensions is complicated because of the existence of the peak near the frequency 
w,, which is related to the surface modes of our model. It is necessary now to build 
a model based on another fractal structure, such as diffusion-limited aggregation (DLA), 
cluster-cluster aggregation (CCA), etc, with a different homogeneous particle of various 
sizes. 
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