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Abstract. We have studied the density of states (D0s) of the fracton regime, which is localized in
the very-low-frequency region (less than 1/100 of the spectrum), of a very large (more than 108
atoms) realistic model for silica aerogels. Qur mode] is based on a percolating fractal strecture,
with an homogeneous parlicte represented by a sample of vitreous silica (v-5i0z), given by
a molecular dynamics simulation. Interactions are represenied by the Born-Mayer—Higgins
potential. To evaluate the DOS we have developed the linear-frequency moments method, which
allows us to compute the DOS of a very large system with great efficiency in the low-frequency
region. A comparison with the experimental results for silica aerogels is reported.

1. Introduction

Recently the fractal description has been used intensively to treat the microscopic structure
and the dynamics of inhomogeneous systems. Thus, for realistic fractal systems, theoretical
work (Alexander and Orbach 1982, Alexander et af 1983, Feng and Sen 1984, Grest
and Webman 1984, Alexander 1986, Yakubo and Nakayama 1987, 1989) suggests that at
intermediate length scales !, between their homogeneous particle size a and their correlation
length &, the vibrational density of states (DOS) g{w) is particularly simple:

glw) ~ ! (1)

where d is the spectral (fracton) dimension. One can recognize weakly localized acoustic
phonons at [ > £ and particle modes at / < a. In addition to the phonon—fracton w;
and the fracton—particle @, crossover frequencies, it is found that for the standard discrete
percolating networks model, there exists a new crossover length scale /; ~ 1/w, which
depends on the relative strength of the microscopic bond-stretching and bond-bending elastic
force constants, such that if /. > a, for I < [, the bond-stretching motion is energetically
favourable, whereas for [ > I, the bond-bending motion becomes dominant (Feng 1985).
Thus, when w, is smaller than we, the fracton properties of the system are governed by
d= ‘3—‘, in conformity with the Alexander and QOrbach conjecture (1982), whereas when w,
is much larger than wg there is an interesting crossover from an effective spectral dimension
D to d as the frequency is increased through the fracton regime. D is close to 0.9 (Webman
and Grest 1985).

On the other hand, using small-angle neutron scattering (SANS), Courtens e al (1987a, b,
1988), Vacher er al (1988) and Reichenaver ez af (1989) showed that porous silica aerogels
reveal a fractal structure for a wide range of densities, with fractal dimension D = 1.8-2.4.
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Combining neutron, Raman and Brillouin spectroscopies they identified in the DOS spectrum
three crossovers (Vacher ez al 1990, Bernasconi ef ol 1992), and two distinct regions in the
fracton regime of samples of different microstructures that they associated with bend- and
stretch-dominating elasticities (Vacher et @l 1990},

To interpret the dynamical behaviour of these systems, we have studied the dynamical
properties of site and bond percolation (Rahmani ef al 1993). Based on the Born potential
with first and second neighbours, our models, where we supposed that each site of the
percolating cluster was occupied by a punctual particle, showed that it is difficult to deduce
clearly the nature of the contributions of the DOS of silica aerogels. So, the construction of
a mode] based on a more realistic structure and potential energy seems to be necessary.

A primary goal of this work is to build a realistic fractal model that is able to reproduce
the different contributions in the DOS of silica aerogels. To do this, it is not only necessary
to work on a very large system (more than 10° atoms) that is able to generate fracton
modes, but one must use computational techniques that are sufficiently powerful to treat
these systems.

To specify the numerical method used, we shall in this paper call the method which
allows us to determine the squared-frequency distribution function G(w?), the squared-
frequency moments method and the method used to compute the DOS g(w) the linear-
frequency moments method.

The squared-frequency moments method is a powerful tool for the determination of
the linear response (infrared, Raman and inelastic neutron scattering) of harmonic systems
(Benoit 1987, 1989, Benoit and Poussigue 1989, Benoit et af 1990, Poussigue and Benoit
1990, Poussigue er af 1991). As is well known, the method is not only simple but can be
applied to very large systems, whatever the type of atomic forces, dimension of space or the
structure of the material. The method applied to the calculation of the total DOS presents
some difficulties at very low frequencies. Nevertheless, the DOS of very large percolating
clusters (up to 10° atoms) has been computed (Benoit et af 1992a,b, Royer et al 1992,
Rahmani er af 1993). Indeed, the method seems to be very efficient in the analysis of
spectra between umay and 10* (umy = @2,,; @max is the maximal frequency of the spectra).

Experimental data concerning silica aerogels show that the fracton region is localized
at frequencies less than 300 GHz, whereas wpax ~ 36000 GHz. So, at the very outset, we
cannot apply the squared-frequency moments method to the study of the fracton region of
a realistic system. To do this, we have developed a particularly new and productive form
of the moments method: the linear-frequency moments method, which allows us to reach
the frequency region below gy /10%, by providing directly the total DOS g(w). In fact, by
using the squared-frequency moments method, one computes first the function G{u), where
u = w?, and from there one deduces the function g(ew), thanks to the relation

g(®) = 206 (@)

where g{w) dw is the fraction of frequencies in the interval {w, w + dw).
In the following, we present a numerical computation of the DOS using the linear-
frequency moments method, which allows a direct determination of g(e).

2. Computational procedure

As we mentioned above, thanks to the squared-frequency moments method, we can calculate
the function G(u) which is given by

Gu)=) Su—wh) =) 8u—1x) 2
i )
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where }; = wf is the jth eigenvalue of the dynamical matrix D of the system. To calculate
the DOS function g{w):

glw) =) 8(w—wy) 3)
.

where ¢; = \/l_j, we take the 2N x 2N matrix & (N is the size of D) defined by

0o |
"= (5 o)
where | is the N x N identity matrix. It is easy to show that the eigenvalues of & are Law;.

If the squared-frequency moments method is based on the matrix D, the frequency
moments method is based on the matrix ®. From definition (3) g(w) can be written as

g(w) = —(1/m) im0+ [R(2)] with z = w + is (4a)
where R(z), the Stieltjes transform of g{w), is given by
Riz) = Tel(el — &)7'1. (44)

At this stage, one can see that the frequency moments method follows the same procedure
as the squared-frequency moments method. Thus, R(z) is then obtained by (Benoit et al
1992b)

M
R(2) = (1/AM) Y R*(z) (4c)

a=1

where
RY(z) = (g°%|(zl — &) |g%) (4d)

where |g%) is a vector whose components are randomly and uniformly distributed between
0.5 and —0.5, ¢ is an integer varying from 1 to M (M — c0), A is a normalization constant

equal to 1'—2, and for any @ and 8 there is the relation

(1/2N)(g% | q%) = Abgg.

With the conditions that & is large enough and homogeneous, it is sufficient to take M
equal to one (or a small number). In our calculations we take M = [,

The method now consists of expanding R%(z) in a continued-fraction expansion
{Stieltjes 1884, Gaspard and Cyrot-Lackmann 1973, Jurczek 1985):

W i
R¥(z) = - b (3)

Z_‘aa] -

5%

a
T—d,— ™
b%

Z- aun - ¢(Z)

@
Z-—ﬂ3—...
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where ¢(z) is the infinite tail of the fraction. The coefficients a* and b* are derived from
P and are given by

agy =] and B =7/v, (©)
where v¥ and ¥ are the spectral generalized moments defined by (Benoit 1987)

e = (g% | PY ()P (®)g%) (Ta)
B = (g% | P (DYD P (D)Ig™). (7b)

It is easter to show that bY equals zero, and consequently a2 also. The polynomials PJ{®)
obey the following recusrence law:

P (@) = ®PI(®) — 5{ P (D) &)
with P2 (®) =0 and Fy(P) = L.

The determination of the tail ¢(z) is not trivial. Indeed, as shown in Benoit ¢t af
(1992b}, a sharp truncation of the fraction causes the appearance of sharp lines in the
calculated spectrum. To obtain a good solution, one analyses the Fourier components of the
coefficients b,. If they exhibit oscillations with the period m (m > 1) &5 = b, , then the
tail wili be given by

0%, + PA() + /(05,2 + P5(@) — 402, (D PL_, (@)
2P2_ ()

Pom(2) = ®

P2 (z) obeys the recurrence law (8) and Q%(z) obeys the following:
Q:+l(z) = ZQ,? (z) — b? f..](z)

with Q%,(z) =0, Q5(z) = .

As we shall see, a very good agreement is noted between the frequency and the squared-
frequency moments method. However, calculations show that a greater number of moments
are required with the second method (more than 400). In the case of the first method, about
200 moments are sufficient.

3. Physical model

Our realistic fractal model for silica aerogels is based on 2 3D infinite cluster percolation
structure (figure 1). The homogeneous particle of our aggregates is a 96-atoms (32 silicons
and 64 oxygens) sample of vitreous silica (v-SiOz), with a base size of 10 A in X and Y,
and 14 A in Z, given by a molecular dynamics simulation (Garofalini 1982, Garofalini and
Levine 1985, Feuston and Garofalini 1988).

The potential used in this study is given by the modified Born-Mayer—Higgins equation,
which has been used as the effective potential in the molecular dynamics simuiation
{Garofatini 1982). This potential has been shown to be a good potential to reproduce
the experimentally determined radial distribution function, bond-angle distribution and



A fractat mode! for silica aerogels ' 1487

' 104 :
! Sample of WSOy (O : 64 ; Si: 32
| given by Molecular Dynamic Simulation;

Figure 1. A schematic diagram of the mode! for silica aerogels: samples are placed on sites of
an ipfinite 3D percolating cluster.

frequency spectrum for bulk silica and silicate glasses. This equation gives the potential
between atoms { and j as

Vijris) = Ay exp(=rij/py) + (Z:Z;€* [ ripdefe(ry;/ By) (10)
where A;; is a short-range repulsive parameter based on ion sizes:
Ay =1+ Zi/ni + Z;/nj)bi; explo; + o;/ pij)

with Z the electronje charge, n the number of valence shell electrons, ¢ the atomic size (the
repulsive radius parameter), ry; the distance between atoms { and j, p, 8 and b adjustable
constants, and the function erfe in the Coulomb term is the complementary error function
defined by

2r /g
erfc(r/f)=1— — exp(—rzsz) ds.
0

The values for p, £, and b were determined by apalysing the frequency spectrum (DOS) of
the isolated homogeneous particle, with a nearest-neighbour cut-off for all interactions equal
to 4 A, using the usual dynamics matrix diagonalization. The isolated homogeneous particle
is the sample of v-8i0; given by the molecular dynamics simulation, where we exclude
pericdic conditions in the dynamical matrix calculations. As one can expect, the suppression
of these conditions induces instability of the system by the ccourrence of negative frequency
squares. With the values for A;;, §;; and pi; given in table 1, our system is stable and the
general features of the spectrum appear to be consistent with experimental data for vitreous
silica. The peak in the low-frequency region (~ [00 em™!) is related to the shortness of
the particle size (figure 2).
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Table 1. The parameters used in the Born-Mayer—Higgins potential,

Ay Bi; oy Pij
i i Z;  Zy (10%erg) 0 ¥erg)  (10%erp) (1075 erg)
S5i Si 44 +4 0.3963 22100 1.148 0.5075
Si 0O =4 -2 05104 12750 1.284 0.5075
O 0 -2 -2 0,1014 2.1510 1.421 0.5075

In our model (Rahmani 1993), we assume that particles are placed at sites of the 3D
infinite percolation cluster formed on a regular cubic lattice, with an occupation probability
p 2 p: (p. =0.311), pc being the percolation threshold.

If u, f denotes the displacement of the atom { of a particle { in the « direction, the

set of equations of motion for the atom i is given by

I i3
mizza(i)=_2¢aﬁ(ié)uﬂ(‘;) (@=1,2 and 3) (11
-5 1

with
! ! i
e (ff) =2 %u (fj) (2

i,

y
where Qg (ii ) are the force constants between atoms { and j given by

. (n')z[wﬁ 13%-,-_32‘4?)_3 l%} .a3)
i rr \r 3r  3r? “roar r=ir@) -l

my, ryg, are respectively the mass (mo = 16 g/A and ms = 28 g/N; N being the
Avogadro number) and the equilibrium position of the ith atom (given by the dynamics
molecular simulation) in the Ith particle. Two particles are called neighbours if the sites
that they occupied are first or second neighbours; V;; is the Born—Mayer—Higgins potential
(10); its parameters are given in table 1.

4. Results and discussion

To test the accuracy of our technique, we have plotied in figure 2 the DOS of the isolated
homogeneous particle obtained by the frequency moments method, the squared-frequency
moments method and diagonalization. Excellent agreement is noted between the three
methods.

To illustrate the efficiency of the frequency moments method in the very-low-frequency
region, we have plotted in figure 3, on a log-log scale, the DOS g(w) versus w of a percolating
cluster formed on a cubic lattice of size 65° at p = 0.33. Interactions are represented by
the Born potential (Qiming Li e? al 1990, Yakubo et af 1990, Yakubo and Nakayama 1987,
1989, Webman and Grest 1985):

V = %O‘.’ZKU('M[‘ "-'U:_'.')z

ij
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Figure 2. The Dos g{w) versus w for the isolated homogeneous particle (96 atomns), and a test
of the linear-frequency moments method. —&—, diagonalization; —l—, squared-frequency
moments method; —A—, linear-frequency moments method.

where the summation is performed over the first-nearest neighbouring pairs (f, j) and u; is
the displacement of the atom i, &;; is a random variable which takes the value 1 if the sites
i and j are both occupied, and O otherwise, and & = 0.125 is the strength of the elastic
interaction parameter. The system is represented by an infinite cluster where each site is
occupied by a particle of mass m = 1. The slope in the fracton region is 0.33+0.02, i.e. the
spectral dimension is 4 = 1.33 4 0.02, in good agreement with the Alexander and Orbach
conjecture (d = %). One can show also that the frequency moments method has allowed
us to reach the low-frequency region down to ~ wm/10°, whereas the squared-frequency
moments method is limited to ~ wmu/10%.

To compare the frequency moments method to the squared-frequency method, at very
low frequencies in the case of our realistic model for silica aerogels, we have represented,
in figure 4, the DOS g{w) versus w, on a log-log scaie, of a cluster constructed on a cubic
lattice of size 23* at p = 0.33. One can observe the accuracy of both technigues up
to a frequency ~ 400 GHz, which is of the order of wpy/100. Below this frequency
the squared-frequency moments method diverges. However, for such a system the lowest
frequency must be at least of the order of the lowest-frequency mode of the v-SiQ; system
of size L = 322 A ie. wmin = 100 GHz. The frequency moments method seems, with
precautions in the computing tail, to reproduce nicely the DOS of the system, as we shall
see.

Cemputations were performed on the same cubic lattice of side ¢ = 35, for different
occupation probabilities p: (a) p = 0.321, () p = 0.325, (¢) p = 0.331 and (d) p = 0.350.
In table 2, we have reported the dimensions x, y, and z, the macroscopic densities p and
the order N of the dynamical mairix D of our aggregate. We have also given the memory
occupation and the CPU times necessary to compute one coefficient of the continued fraction
for each system. '

In figure 5{a), we have reported values for the coefficients &, versus r for systems (a),
(&) and (¢). We note a very good stability in the b, calculation. We observe also that these
coefficients exhibit a pseudo-periodicity, which is determined by analysing the &, Fourier
components (figure 5(k)). We note the presence of a pseudo-period close to four. So, to
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Figure 3. The oS on a log-log scale for 2 3p site-percolating network of size 65% at
the occupation probability p = 0.33 (pe = 0.3112), in the case of the scalar model using
the squared-frequency and the linear-frequency moments methods. ——, squared-frequency
moments method; ——, lineas-frequency moments raethod,

h
&

determine the tail ¢{z) of the continued fraction, and in order to obtain smooth curves, we
choose a multiple of four, m = 16, in equation (9), which gives more stable results.

In figure 6 we have represented the function log(g(w)) versus log{w) for the four systems
(@), (b), (c) and (d) defined in table 2, We note that the four curves show a common region
above the frequency w, ~ 300 GHz. Obviously, this region represents the particle modes.
The caiculated value for w, is in agreement with the experimental value of 250 GHz obtained
for the sample designated NH in Vacher et al (1990), which is composed of particles of
mean size ~ 12 A (14 A x 10 A x 10 A for our samples) and has a macroscopic density
p=210kg m™3.

We observe also in these spectra the presence of an intensive peak near e,. In contrast,
experimental data show a weak peak in this region. In order to determine the nature of
this peak, we have computed the surface projected DOS of our system. To do this, we have
taken random charges |¢%} on atoms of the surface which are in a thickness of 2 A of our
aggregate and zero elsewhere. We have reported in figure 7, the surface DOS and the total
DOS of 2 sample formed on a cubic lattice 233 at p = 0.33. One can show that, qualitatively,
the two curves present the same behaviour. The peak observed in the surface DOS is more
enhanced than the peak of the total DOS. Hence, one can conclude that the surface modes
contribute strongly in the fracton DOS and especially near the crossover w,.

The strong intensity of the peak obtained theoretically compared with the experimental
intensity can be explained by the structure of our model, which is based on identical
homogeneous particles. In real systems, the presence of particles of different sizes could
produce a dispersion of the surface modes near w,, whereas identical particles could give
an accumulation of modes in this region.
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log(g( © )

017

001 — ey . — - ey
10 00 1ot @ (GHz) 100 10000

Figure 4. The pos g{w) versus w, on a log-log scale, for a sample formed on a 3 site-
percolating cluster (23% cubic lattice at p = 0.33) vsing the squared-frequency and the linear-
frequency moments methods. ——, squared-frequency moments method, —, linear-frequency
moments method,

Table 2. Characteristics of the computed aggregates: x, y and z design the dimensions of the
aggregates, o is the macroscopic density, N is the size of D for the Four samples {(q), (&), (¢}
and (d); CPU, times necessary to compute one moment; Memory, memory storage required for
each system uging the lincar-frequency moments method.

a  x{& y&y z2(A) cru(s)  Memory (Mb) N p kg m™3)
- 11,52 70 537696  104.8(a)

35 350 350 490 14.31 85 667872  130.0(&)
19.60 120 014976  178.3(c)

31.54 130 1472256  262.3(d)

In regions below w, our sysiems present an accumulation of fractons. Since our model
does not include periodic conditions, one does not expect a Debye law in the very-low-
frequency region. Nevertheless, it seems that for the dense sample (¢) a phonon region
begins to set up below .

We remark that the crossover frequency w; for the weakly dense system (a : o = 105 kg
m™?) is of the order of 10 GHz, whereas we = | GHz in experiment. This difference can
be related to two factors.

(1) The efficiency of the frequency momenis method. As established before, the test
shows an efficiency of the technique up t0 Wy, /1000, ie. 35 GHz for silica acrogels. At
the very outset, we have no proof that this frequency is the limit of our numerical methad.
The stability of the obtained result and, as we shall show, the coherent behaviour of the
DOS with macroscapic density changes indicate that the linear-frequency moments method
is valid at least until 10 GHz.

(ii) This point concerns the structure of our model. We mention, firstly, the choice of
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1.5
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Fipure 5. (¢) Plats of the coefficients b, versus n for the three systems noted {(a), (b) and {¢).
(b) A plot of the Fourier compaonents of the coefficients &,.

the fractal structure. The percolating model seems to be inadequate for the silica aerogels
structure because of its connectivity (Alexander 1989). A soft structure is certainly more
representative for that system. If the lowest frequency of our model is smaller than the
experimental one, we can deduce that our model is more rigid than silica aerogels. This
behaviour can be related to the interaction force intensity. Real systems are composed
of particles of different sizes, so the interactions concern a small surface of particles in
contact, i.e. weak interactions. In our model, the parallelepiped form of our identical
particles reinforces greatly the interactions.

Let us consider the behaviour of the pos with the macroscopic density (o) variations.
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log (@ (GHz))

Figure 6. The 0Os glw) versus w, on a log-log scale for the four samples noted (a), (), ()
and (), which are formed on a 35% cubic lattice at values for p of, respectively, 0.3210, 0.3250,
0.3305 and 0.3500.

PENP

leg(g( )

.01+

001 e A e eyt

10 100 1000 - 10000
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Figure 7. The total and surface Dos g(w) versus w, on a log-log scale, for a sample formed

on a 3D site-percolating cluster (23° cubic lattice at p =0.33). —, pos (surface), —, DOS

(total).
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We show that the crossover w; varies from 10 GHz for the Jess dense system (@) to 42 GHz
for the more dense system (d). This result reproduces the experimental data concerning
the increase of the sound velocity with increasing p (Conrad ef af 1989, Courtens er al
1987a,b). We have represented, in figure 8, the variations of the frequency w; versus p,
on a log-log scale. The slope is equal to 1.34 £ 0.03. Since our model size L is finite, the
sound velocity v is given by (Alexander and Orbach 1982)

wg = 2mv(L)/L.

We can deduce that

v ~ 542005,

Qualitatively, this behaviour is consistent with resnits obtained for silica aerogels (Vacher
et al 1988). This accuracy supports the efficiency of the frequency moments method in
determining the low-frequency region of the DOS below wma/100; wy ~ 10 GHz for the
first system (a).

2.0‘|

log( @ ?‘;)

slope:1.54 £0.05
1.5

1.0

0.5 T T T y T v Y y 1
2.0 21 2.2 2.3 2.4 2.5

log( p}

Figure 8. The crossover frequency ey for the realistic model pos, veesus the macroscopic
density p, on a log-log scale.

Finally, concerning the two contributions identified in the fracton regime DOS of silica
aerogels, which are associated with the stretching and bending elasticities, our model
reproduces these contributions. The low-frequency fracton region (wy < » < w, ~ 80 GHz)
can be described by an effective spectral dimension 1.00 £0.02 < D < 1.30 £ 0.02 for
105 kg m? < p < 262 kg m™>. It is difficult to analyse the high-frequency fracton region
(0 < @ < w,y) in terms of an effective spectral dimension because of the presence of
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the peak at w,. We can conclude that our model reproduces qualitatively the experimental
fracton regime of silica aerogels.

In conclusion, we have developed a realistic model for silica aerogels based on infinite
percolating clusters, with an homogeneous particle represented by a sample of v-Si0; given
by a molecular dynamics simulation. Thanks to the frequency moments method, we have
calculated the DOS of systems of size ~ 500 A x 350 A x 350 A and of different densities.
More than 10° degrees-of-freedom systems are studied. An excellent efficiency is noted
with the frequency moments method in determining the very-low-frequency region below
emax/ 100, Our model reproduces qualitatively the silica aerogels DOS: particle modes in the
high-frequency region above ~ 300 GHz followed in the low-frequency region by a fracton
regime sensitive to the macroscopic density. In agreement with reality, we note also that our
model shows that the more the macroscopic density increases the more the sound velocity
in our systems increases. However, an analysis of the fracton region in terms of effective
spectral dimensions is complicated because of the existence of the peak near the frequency
g, which is related to the surface modes of our model. It is necessary now to build
a model based on another fractal structure, such as diffusion-limited aggregation (DLA),
cluster—cluster aggregation (CCA), etc, with a different homogeneous particle of various
sizes.
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